Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 15.619
Filtrar
1.
Biochem Pharmacol ; 223: 116183, 2024 May.
Artigo em Inglês | MEDLINE | ID: mdl-38580167

RESUMO

In this study, we have investigated the pharmacological activity and structural interaction of two novel psychoplastogens, tabernanthalog (TBG) and ibogainalog (IBG) at heterologously-expressed rat (r) and human (h) nicotinic acetylcholine receptors (nAChRs), the rα1ß2γ2L γ-aminobutyric acid type A receptor (GABAAR), and the human voltage-gated N-type calcium channel (CaV2.2 channel). Both compounds inhibited the nAChRs with the following receptor selectivity: α9α10 > α7 > α3ß2 â‰… α3ß4, indicating that ß2/ß4 subunits are relatively less important for their activity. The potencies of TBG and IBG were comparable at hα7 and hα9α10 subtypes, and comparable to their rat counterparts. TBG- and IBG-induced inhibition of rα7 was ACh concentration-independent and voltage-dependent, whereas rα9α10 inhibition was ACh concentration-dependent and voltage-independent, suggesting that they interact with the α7 ion channel pore and α9α10 orthosteric ligand binding site, respectively. These results were supported by molecular docking studies showing that at the α7 model TBG forms stable interactions with luminal rings at 9', 13', and 16', whereas IBG mostly interacts with the extracellular-transmembrane junction. In the α9α10 model, however, these compounds interacted with several residues from the principal (+) and complementary (-) sides in the transmitter binding site. Ibogaminalog (DM506) also interacted with a non-luminal site at α7, and one α9α10 orthosteric site. TBG and IBG inhibited the GABAAR and CaV2.2 channels with 10 to 30-fold lower potencies. In sum, we show that TBG and IBG inhibit the α7 and α9α10 nAChRs by noncompetitive and competitive mechanisms, respectively, and with higher potency than the GABAAR and CaV2.2 channel.


Assuntos
Receptores Nicotínicos , Ratos , Animais , Humanos , Receptores Nicotínicos/metabolismo , Receptores de GABA-A/genética , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Simulação de Acoplamento Molecular , Ácido gama-Aminobutírico
2.
PLoS One ; 19(4): e0301592, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38635806

RESUMO

Hippocampal interneurons are a very diverse population of cells. Using single-cell quantitative PCR to analyze rat CA1 hippocampal interneurons, we quantified neuronal nicotinic acetylcholine receptor (nAChR) mRNA subunit expression and detailed possible nAChR subtype combinations for the α2, α3, α4, α5, α7, ß2, ß3, and ß4 subunits. We also compared the expression detected in the stratum oriens and the stratum radiatum hippocampal layers. We show that the majority of interneurons in the CA1 of the rat hippocampus contain detectable levels of nAChR subunit mRNA. Our results highlight the complexity of the CA1 nAChR population. Interestingly, the α3 nAChR subunit is one of the highest expressed subunit mRNAs in this population, while the α4 is one of the least likely subunits to be detected in CA1 interneurons. The ß2 nAChR subunit is the highest expressed beta subunit mRNA in these cells. In addition, Pearson's correlation coefficient values are calculated to identify significant differences between the nAChR subunit combinations expressed in the CA1 stratum oriens and the stratum radiatum. Statistical analysis also indicates that there are likely over 100 different nAChR subunit mRNA combinations expressed in rat CA1 interneurons. These results provide a valid avenue for identifying nAChR subtype targets that may be effective hippocampus-specific pharmacological targets.


Assuntos
Receptores Nicotínicos , Ratos , Animais , RNA Mensageiro/metabolismo , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Interneurônios/metabolismo , Neurônios/metabolismo , Hipocampo/metabolismo
3.
Pestic Biochem Physiol ; 200: 105837, 2024 Mar.
Artigo em Inglês | MEDLINE | ID: mdl-38582599

RESUMO

Susceptibility to insecticides is one of the limiting factors preventing wider adoption of natural enemies to control insect pest populations. Identification and selective breeding of insecticide tolerant strains of commercially used biological control agents (BCAs) is one of the approaches to overcome this constraint. Although a number of beneficial insects have been selected for increased tolerance to insecticides the molecular mechanisms underpinning these shifts in tolerance are not well characterised. Here we investigated the molecular mechanisms of enhanced tolerance of a lab selected strain of Orius laevigatus (Fieber) to the commonly used biopesticide spinosad. Transcriptomic analysis showed that spinosad tolerance is not a result of overexpressed detoxification genes. Molecular analysis of the target site for spinosyns, the nicotinic acetylcholine receptor (nAChR), revealed increased expression of truncated transcripts of the nAChR α6 subunit in the spinosad selected strain, a mechanism of resistance which was described previously in insect pest species. Collectively, our results demonstrate the mechanisms by which some beneficial biological control agents can evolve insecticide tolerance and will inform the development and deployment of insecticide-tolerant natural enemies in integrated pest management strategies.


Assuntos
Inseticidas , Receptores Nicotínicos , Tisanópteros , Animais , Tisanópteros/metabolismo , Inseticidas/toxicidade , Resistência a Inseticidas/genética , Agentes de Controle Biológico/farmacologia , Receptores Nicotínicos/genética , Receptores Nicotínicos/metabolismo , Insetos/genética , Macrolídeos/farmacologia , Combinação de Medicamentos
4.
Int J Mol Sci ; 25(7)2024 Mar 26.
Artigo em Inglês | MEDLINE | ID: mdl-38612487

RESUMO

We previously demonstrated that a genetic single-nucleotide polymorphism (SNP, rs2304297) in the 3' untranslated region (UTR) of the human CHRNA6 gene has sex- and genotype-dependent effects on nicotine-induced locomotion, anxiety, and nicotine + cue-induced reinstatement in adolescent rats. This study aims to investigate how the CHRNA6 3'-UTR SNP influences dopaminergic and noradrenergic tissue levels in brain reward regions during baseline and after the reinstatement of drug-seeking behavior. Naïve adolescent and adult rats, along with those undergoing nicotine + cue reinstatement and carrying the CHRNA6 3'-UTR SNP, were assessed for dopamine (DA), norepinephrine (NE), and metabolites in reward pathway regions. The results reveal age-, sex-, and genotype-dependent baseline DA, NE, and DA turnover levels. Post-reinstatement, male α6GG rats show suppressed DA levels in the Nucleus Accumbens (NAc) Shell compared to the baseline, while nicotine+ cue-induced reinstatement behavior correlates with neurotransmitter levels in specific brain regions. This study emphasizes the role of CHRNA6 3'-UTR SNP in the developmental maturation of the dopaminergic and noradrenergic system in the adolescent rat brain, with tissue levels acting as predictors of nicotine + cue-induced reinstatement.


Assuntos
Dopamina , Receptores Nicotínicos , Humanos , Adolescente , Adulto , Masculino , Animais , Ratos , Norepinefrina , Nicotina , Polimorfismo de Nucleotídeo Único , Encéfalo , Regiões 3' não Traduzidas/genética , Receptores Nicotínicos/genética
5.
Commun Biol ; 7(1): 437, 2024 Apr 10.
Artigo em Inglês | MEDLINE | ID: mdl-38600247

RESUMO

The ability of the Torpedo nicotinic acetylcholine receptor (nAChR) to undergo agonist-induced conformational transitions requires the presence of cholesterol and/or anionic lipids. Here we use recently solved structures along with multiscale molecular dynamics simulations to examine lipid binding to the nAChR in bilayers that have defined effects on nAChR function. We examine how phosphatidic acid and cholesterol, lipids that support conformational transitions, individually compete for binding with phosphatidylcholine, a lipid that does not. We also examine how the two lipids work synergistically to stabilize an agonist-responsive nAChR. We identify rapidly exchanging lipid binding sites, including both phospholipid sites with a high affinity for phosphatidic acid and promiscuous cholesterol binding sites in the grooves between adjacent transmembrane α-helices. A high affinity cholesterol site is confirmed in the inner leaflet framed by a key tryptophan residue on the MX α-helix. Our data provide insight into the dynamic nature of lipid-nAChR interactions and set the stage for a detailed understanding of the mechanisms by which lipids facilitate nAChR function at the neuromuscular junction.


Assuntos
Receptores Nicotínicos , Animais , Receptores Nicotínicos/metabolismo , Torpedo/metabolismo , Fosfolipídeos , Músculos/metabolismo , Fosfatidilcolinas , Colesterol/metabolismo
6.
Sci Rep ; 14(1): 8291, 2024 04 09.
Artigo em Inglês | MEDLINE | ID: mdl-38594566

RESUMO

Neonicotinoids (NEOs) have been designed to act selectively on insect nicotinic acetylcholine receptors (nAChRs). However, nAChRs are also expressed in vertebrate immune cells, so NEOs may interfere with the immune system in exposed non-target animals. The present study shows that NEOs: imidacloprid and thiacloprid, and their main metabolites: desnitro-imidacloprid and thiacloprid amide, at sub-micromolar concentrations ranging from 2.25 to 20 µM, affect the immune cells of fish. This was found both in primary cultures of leukocytes isolated from the carp head kidney and in the continuous adherent carp monocyte/macrophage cell line. Moreover, the results revealed that the studied pesticides and metabolites generate oxidative stress in carp immune cells and that this is one of the most important mechanisms of neonicotinoid immunotoxicity. Significant increases were observed in the formation of ROS and malondialdehyde (MDA). The antioxidant status alteration was linked with decrease in antioxidant enzyme activity: superoxide dismutase (SOD), catalase (CAT), and non-enzymatic antioxidant glutathione (GSH). Importantly, the metabolites: desnitro-imidacloprid and thiacloprid amide showed significantly higher cytotoxicity towards fish leukocytes than their parent compounds, imidacloprid and thiacloprid, which emphasizes the importance of including intermediate metabolites in toxicology studies.


Assuntos
Carpas , Inseticidas , Receptores Nicotínicos , Tiazinas , Animais , Inseticidas/toxicidade , Carpas/metabolismo , Antioxidantes/metabolismo , Neonicotinoides/toxicidade , Nitrocompostos/toxicidade , Estresse Oxidativo , Receptores Nicotínicos/metabolismo , Leucócitos/metabolismo , Amidas
7.
J Environ Sci Health B ; 59(5): 277-284, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38600794

RESUMO

The organophosphate insecticide chlorpyrifos (CPF), an acetylcholinesterase inhibitor, has raised serious concerns about human safety. Apart from inducing synaptic acetylcholine accumulation, CPF could also act at nicotinic acetylcholine receptors, like the α7-isoform (α7-nAChR), which could potentially be harmful to developing brains. Our aims were to use molecular docking to assess the binding interactions between CPF and α7-nAChR through, to test the neurocytotoxic and oxidative effects of very low concentrations of CPF on SH-SY5Y cells, and to hypothesize about the potential mediation of α7-nAChR. Docking analysis showed a significant binding affinity of CPH for the E fragment of the α7-nAChR (ΔGibbs: -5.63 to -6.85 Kcal/mol). According to the MTT- and Trypan Blue-based viability assays, commercial CPF showed concentration- and time-dependent neurotoxic effects at a concentration range (2.5-20 µM), ten-folds lower than those reported to have crucial effects for sheer CPF. A rise of the production of radical oxygen species (ROS) was seen at even lower concentrations (1-2.5 µM) of CPF after 24h. Notably, our docking analysis supports the antagonistic actions of CPF on α7-nAChR that were recently published. In conclusion, while α7-nAChR is responsible for neuronal survival and neurodevelopmental processes, its activity may also mediate the neurotoxicity of CPF.


Assuntos
Clorpirifos , Neuroblastoma , Receptores Nicotínicos , Humanos , Clorpirifos/toxicidade , Simulação de Acoplamento Molecular , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Acetilcolinesterase/metabolismo , Receptores Nicotínicos/metabolismo
8.
Proc Natl Acad Sci U S A ; 121(16): e2320416121, 2024 Apr 16.
Artigo em Inglês | MEDLINE | ID: mdl-38588428

RESUMO

Pores through ion channels rapidly transport small inorganic ions along their electrochemical gradients. Here, applying single-channel electrophysiology and mutagenesis to the archetypal muscle nicotinic acetylcholine receptor (AChR) channel, we show that a conserved pore-peripheral salt bridge partners with those in the other subunits to regulate ion transport. Disrupting the salt bridges in all five receptor subunits greatly decreases the amplitude of the unitary current and increases its fluctuations. However, disrupting individual salt bridges has unequal effects that depend on the structural status of the other salt bridges. The AChR ε- and δ-subunits are structurally unique in harboring a putative palmitoylation site near each salt bridge and bordering the lipid membrane. The effects of disrupting the palmitoylation sites mirror those of disrupting the salt bridges, but the effect of disrupting either of these structures depends on the structural status of the other. Thus, rapid ion transport through the AChR channel is maintained by functionally interdependent salt bridges linking the pore to the lipid membrane.


Assuntos
Receptores Colinérgicos , Receptores Nicotínicos , Receptores Nicotínicos/genética , Receptores Nicotínicos/química , Músculos , Transporte de Íons , Lipídeos
9.
Sci Rep ; 14(1): 9392, 2024 Apr 24.
Artigo em Inglês | MEDLINE | ID: mdl-38658769

RESUMO

A series of arecoline derivatives with amino acid moieties were designed and synthesised using an acylamide condensation strategy, taking arecoline as the foundational structure. The insecticidal efficacy of these compounds against Aphis craccivora and Tetranychus cinnabarinus was evaluated. Notably, derivatives 3h and 3i demonstrated superior insecticidal activity compared with arecoline. Additionally, 3h and 3i showed good fungicidal effectiveness against two types of plant fungi. Moreover, molecular docking analyses suggested that 3h and 3i could affect the nervous systems of A. craccivora and T. cinnabarinus by binding to neuronal nicotinic acetylcholine receptors. These findings suggest that compounds 3h and 3i represent promising leads for further development in insecticide and fungicide research.


Assuntos
Aminoácidos , Antifúngicos , Desenho de Fármacos , Inseticidas , Simulação de Acoplamento Molecular , Inseticidas/farmacologia , Inseticidas/síntese química , Inseticidas/química , Animais , Antifúngicos/farmacologia , Antifúngicos/síntese química , Antifúngicos/química , Aminoácidos/química , Afídeos/efeitos dos fármacos , Tetranychidae/efeitos dos fármacos , Relação Estrutura-Atividade , Receptores Nicotínicos/metabolismo , Receptores Nicotínicos/química , Testes de Sensibilidade Microbiana
10.
Mar Drugs ; 22(3)2024 Feb 27.
Artigo em Inglês | MEDLINE | ID: mdl-38535451

RESUMO

α-Conotoxins (α-CTxs) are structurally related peptides that antagonize nicotinic acetylcholine receptors (nAChRs), which may serve as new alternatives to opioid-based treatment for pain-related conditions. The non-natural amino acid analogues of α-CTxs have been demonstrated with improved potency compared to the native peptide. In this study, we chemically synthesized Dab/Dap-substituted analogues of α-CTx PeIA and evaluated their activity at heterologously expressed human α9α10 nAChRs. PeIA[S4Dap, S9Dap] had the most potent half-maximal inhibitory concentration (IC50) of 0.93 nM. Molecular dynamic simulations suggested that the side chain amino group of Dap4 formed additional hydrogen bonds with S168 and D169 of the receptor and Dap9 formed an extra hydrogen bond interaction with Q34, which is distinctive to PeIA. Overall, our findings provide new insights into further development of more potent analogues of α-CTxs, and PeIA[S4Dap, S9Dap] has potential as a drug candidate for the treatment of chronic neuropathic pain.


Assuntos
Conotoxinas , Receptores Nicotínicos , Humanos , Aminoácidos , Ligação de Hidrogênio , Simulação de Dinâmica Molecular
11.
Cells ; 13(6)2024 Mar 07.
Artigo em Inglês | MEDLINE | ID: mdl-38534318

RESUMO

Parkinson's disease (PD) is a progressive neurodegenerative disease characterized by resting tremor, bradykinesia, rigidity, and postural instability that also includes non-motor symptoms such as mood dysregulation. Dopamine (DA) is the primary neurotransmitter involved in this disease, but cholinergic imbalance has also been implicated. Current intervention in PD is focused on replenishing central DA, which provides remarkable temporary symptomatic relief but does not address neuronal loss and the progression of the disease. It has been well established that neuronal nicotinic cholinergic receptors (nAChRs) can regulate DA release and that nicotine itself may have neuroprotective effects. Recent studies identified nAChRs in nonneuronal cell types, including glial cells, where they may regulate inflammatory responses. Given the crucial role of neuroinflammation in dopaminergic degeneration and the involvement of microglia and astrocytes in this response, glial nAChRs may provide a novel therapeutic target in the prevention and/or treatment of PD. In this review, following a brief discussion of PD, we focus on the role of glial cells and, specifically, their nAChRs in PD pathology and/or treatment.


Assuntos
Doenças Neurodegenerativas , Doença de Parkinson , Receptores Nicotínicos , Humanos , Doença de Parkinson/metabolismo , Receptores Nicotínicos/metabolismo , Doenças Neurodegenerativas/metabolismo , Nicotina/metabolismo , Dopamina/metabolismo , Astrócitos/metabolismo
12.
Mar Drugs ; 22(3)2024 Feb 29.
Artigo em Inglês | MEDLINE | ID: mdl-38535458

RESUMO

The venom of cone snails has been proven to be a rich source of bioactive peptides that target a variety of ion channels and receptors. α-Conotoxins (αCtx) interact with nicotinic acetylcholine receptors (nAChRs) and are powerful tools for investigating the structure and function of the various nAChR subtypes. By studying how conotoxins interact with nAChRs, we can improve our understanding of these receptors, leading to new insights into neurological diseases associated with nAChRs. Here, we describe the discovery and characterization of a novel conotoxin from Conus ateralbus, αCtx-AtIA, which has an amino acid sequence homologous to the well-described αCtx-PeIA, but with a different selectivity profile towards nAChRs. We tested the synthetic αCtx-AtIA using the calcium imaging-based Constellation Pharmacology assay on mouse DRG neurons and found that αCtx-AtIA significantly inhibited ACh-induced calcium influx in the presence of an α7 positive allosteric modulator, PNU-120596 (PNU). However, αCtx-AtIA did not display any activity in the absence of PNU. These findings were further validated using two-electrode voltage clamp electrophysiology performed on oocytes overexpressing mouse α3ß4, α6/α3ß4 and α7 nAChRs subtypes. We observed that αCtx-AtIA displayed no or low potency in blocking α3ß4 and α6/α3ß4 receptors, respectively, but improved potency and selectivity to block α7 nAChRs when compared with αCtx-PeIA. Through the synthesis of two additional analogs of αCtx-AtIA and subsequent characterization using Constellation Pharmacology, we were able to identify residue Trp18 as a major contributor to the activity of the peptide.


Assuntos
Conotoxinas , Caramujo Conus , Receptores Nicotínicos , Animais , Camundongos , Cálcio , Sequência de Aminoácidos , Receptor Nicotínico de Acetilcolina alfa7
13.
Int Rev Neurobiol ; 175: 187-239, 2024.
Artigo em Inglês | MEDLINE | ID: mdl-38555116

RESUMO

New approaches for the treatment of alcohol dependence (AD) may improve patient outcomes. Substitution maintenance therapy is one of the most effective treatment options for opioid and nicotine use disorders. So far, there has been little attention to substitution therapy for the treatment of AD. Here, we explain the mechanistic foundations of alcohol substitution maintenance therapy. Alcohol has many primary targets in the brain (and other organs) and the physical interaction of ethanol molecules with these specific ethanol-sensitive sites on a variety of ionotropic receptors (e.g. GABA-A, NMDA, and nicotinic acetylcholine (nACh) receptors) and ion channels provides the rationale for substitution. As such, a variety of compounds can interact with those ethanol-sensitive sites and can thus substitute for some of the effects of alcohol. For some of these compounds, alcohol discrimination studies have shown their substitution potential. Accordingly, potential substitution treatments include agonists acting at GABA receptors such as sodium oxybate, baclofen and benzodiazepines, NMDA receptor antagonists such as ketamine and memantine, or nAChRs agonists such as varenicline. All these compounds are already approved for other indications and we present clinical evidence for these drugs in the treatment of alcohol withdrawal syndrome (AWS) and in the long-term treatment of AD, and outline future steps for their acceptance as substitution treatment in AD. Finally, we discuss the substitution approach of managed alcohol programs for the most severely affected homeless populations. Results showed that sodium oxybate is probably the closest to a substitution therapy for AD and is already approved for the treatment of AWS and in the long-term treatment of AD in some countries. In conclusion, we argue that better AD treatment can be provided if substitution maintenance treatments for alcohol are implemented at a similar scale as for opioid and nicotine use disorder.


Assuntos
Alcoolismo , Receptores Nicotínicos , Oxibato de Sódio , Síndrome de Abstinência a Substâncias , Tabagismo , Humanos , Alcoolismo/tratamento farmacológico , Oxibato de Sódio/efeitos adversos , Analgésicos Opioides/uso terapêutico , Síndrome de Abstinência a Substâncias/tratamento farmacológico , Etanol/farmacologia , Tabagismo/tratamento farmacológico , Receptores Nicotínicos/uso terapêutico
14.
Neuropharmacology ; 250: 109927, 2024 Jun 01.
Artigo em Inglês | MEDLINE | ID: mdl-38508306

RESUMO

Signaling through nicotinic acetylcholine receptors (nAChRs) plays a role in cocaine reward and reinforcement, suggesting that the cholinergic system could be manipulated with therapeutics to modulate aspects of cocaine use disorder (CUD). We examined the interaction between nAChRs and cocaine reinforcement by expressing a hypersensitive ß2 nAChR subunit (ß2Leu9'Ser) in the ventral tegmental area of male Sprague Dawley rats. Compared to control rats, ß2Leu9'Ser rats acquired (fixed ratio) intravenous cocaine self-administration faster and with greater likelihood. By contrast, ß2Leu9'Ser rats were approximately equivalent to controls in their intake of cocaine on a progressive ratio schedule of reinforcement, suggesting differential effects of cholinergic signaling depending on experimental parameters. Like progressive ratio cocaine SA, ß2Leu9'Ser rats and controls did not differ significantly in food SA assays, including acquisition on a fixed ratio schedule or in progressive ratio sessions. These results highlight the specific role of high-affinity, heteropentameric ß2* (ß2-containing) nAChRs in acquisition of cocaine SA, suggesting that mesolimbic acetylcholine signaling is active during this process.


Assuntos
Cocaína , Receptores Nicotínicos , Ratos , Masculino , Animais , Ratos Sprague-Dawley , Cocaína/farmacologia , Receptores Nicotínicos/metabolismo , Transmissão Sináptica , Colinérgicos , Autoadministração
15.
Chem Biol Interact ; 393: 110957, 2024 Apr 25.
Artigo em Inglês | MEDLINE | ID: mdl-38513929

RESUMO

Huntington's disease (HD) is an inheritable autosomal-dominant disorder that targets mainly the striatum. 3-Nitropropionic acid (3-NP) induces obvious deleterious behavioral, neurochemical, and histological effects similar to the symptoms of HD. Our study aimed to examine the neuroprotective activity of tropisetron, an alpha-7 neuronal nicotinic acetylcholine receptor (α-7nAChR) agonist, against neurotoxic events associated with 3-NP-induced HD in rats. Forty-eight rats were randomly allocated into four groups. Group I received normal saline, while Groups II, III and IV received 3-NP for 2 weeks. In addition, Group III and IV were treated with tropisetron 1 h after 3-NP administration. Meanwhile, Group IV received methyllycaconitine (MLA), an α-7nAChR antagonist, 30 min before tropisetron administration. Treatment with tropisetron improved motor deficits as confirmed by the behavioral tests and restored normal histopathological features of the striatum. Moreover, tropisetron showed an anti-oxidant activity via increasing the activities of SDH and HO-1 as well as Nrf2 expression along with reducing MDA level. Tropisetron also markedly upregulated the protein expression of p-PI3K and p-Akt which in turn hampered JAK2/NF-κB inflammatory cascade. In addition, tropisetron showed an anti-apoptotic activity through boosting the expression of Bcl-2 and reducing Bax expression and caspase-3 level. Interestingly, all the aforementioned effects of tropisetron were blocked by pre-administration of MLA, which confirms that such neuroprotective effects are mediated via activating of α-7nAChR. In conclusion, tropisetron showed a neuroprotective activity against 3-NP-induced HD via activating PI3K/Akt signaling and suppressing JAK2/NF-κB inflammatory axis. Thus, repositioning of tropisetron could represent a promising therapeutic strategy in management of HD.


Assuntos
Doença de Huntington , Fármacos Neuroprotetores , Receptores Nicotínicos , Animais , Ratos , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Doença de Huntington/tratamento farmacológico , Fármacos Neuroprotetores/farmacologia , Fármacos Neuroprotetores/uso terapêutico , NF-kappa B/metabolismo , Nitrocompostos/toxicidade , Fosfatidilinositol 3-Quinases/metabolismo , Propionatos/farmacologia , Proteínas Proto-Oncogênicas c-akt/metabolismo , Receptores Nicotínicos/metabolismo , Transdução de Sinais , Tropizetrona/uso terapêutico
16.
Biochem Biophys Res Commun ; 709: 149825, 2024 May 21.
Artigo em Inglês | MEDLINE | ID: mdl-38537599

RESUMO

SARS-Cov-2, the virus causing COVID-19, penetrates host target cells via the receptor of angiotensin-converting enzyme 2 (ACE2). Disrupting the virus interaction with ACE2 affords a plausible mechanism for prevention of cell penetration and inhibiting dissemination of the virus. Our studies demonstrate that ACE2 interaction with the receptor binding domain of SARS-Cov-2 spike protein (RBD) can be impaired by modulating the α7 nicotinic acetylcholine receptor (α7 nAChR) contiguous with ACE2. U373 cells of human astrocytoma origin were shown to bind both ACE2-specific antibody and recombinant RBD in Cell-ELISA. ACE2 was found to interact with α7 nAChR in U373 cell lysates studied by Sandwich ELISA. Our studies demonstrate that inhibition of RBD binding to ACE2-expressing U373 cells were defined with α7 nAChR agonists choline and PNU282987, but not a competitive antagonist methyllicaconitine (MLA). Additionally, the type 2 positive allosteric modulator (PAM2) PNU120596 and hydroxyurea (HU) also inhibited the binding. Our studies demonstrate that activation of α7 AChRs has efficacy in inhibiting the SARS-Cov-2 interaction with the ACE2 receptor and in such a way can prevent virus target cell penetration. These studies also help to clarify the consistent efficacy and positive outcomes for utilizing HU in treating COVID-19.


Assuntos
COVID-19 , Receptores Nicotínicos , Humanos , SARS-CoV-2/metabolismo , Receptor Nicotínico de Acetilcolina alfa7/metabolismo , Enzima de Conversão de Angiotensina 2/metabolismo , Glicoproteína da Espícula de Coronavírus/química , Receptores Nicotínicos/metabolismo , Ligação Proteica
17.
Drug Alcohol Depend ; 257: 111262, 2024 Apr 01.
Artigo em Inglês | MEDLINE | ID: mdl-38492255

RESUMO

The use of menthol in tobacco products has been linked to an increased likelihood of developing nicotine dependence. The widespread use of menthol can be attributed to its unique sensory characteristics; however, emerging evidence suggests that menthol also alters sensitivity to nicotine through modulation of nicotinic acetylcholine receptors (nAChRs). Nicotinic subunits, such as ß2 and α5, are of interest due to their implications in nicotine reward, reinforcement, intake regulation, and aversion. This study, therefore, examined the in vivo relevance of ß2 and α5 nicotinic subunits on the pharmacological and behavioral effects of menthol. Data suggests that the α5 nicotinic subunit modulates menthol intake in mice. Overall, deletion or a reduction in function of the α5 subunit lessened aversion to menthol. α5 KO mice and mice possessing the humanized α5 SNP, a variant that confers a nicotine dependence phenotype in humans, demonstrated increased menthol intake compared to their WT counterparts and in a sex-related fashion for α5 SNP mice. We further reported that the modulatory effects of the α5 subunit do not extend to other aversive tastants like quinine, suggesting that deficits in α5* nAChR signaling may not abolish general sensitivity to the aversive effects of other noxious chemicals. Further probing into the role of α5 in other pharmacological properties of menthol revealed that the α5 subunit does not modulate the antinociceptive properties of menthol in mice and suggests that the in vivo differences observed are likely not due to the direct effects of menthol on α5-containing nAChRs in vitro.


Assuntos
Receptores Nicotínicos , Tabagismo , Camundongos , Animais , Humanos , Receptores Nicotínicos/genética , Nicotina/farmacologia , Mentol/farmacologia , Tabagismo/genética , Transmissão Sináptica
18.
J Hazard Mater ; 469: 134020, 2024 May 05.
Artigo em Inglês | MEDLINE | ID: mdl-38521037

RESUMO

Dinotefuran is a chiral neonicotinoid that is widely distributed in environmental matrices, but its health risks to different organisms are poorly understood. This study investigated the neurotoxic responses of honeybee/cotton aphid nicotinic acetylcholine receptors (nAChRs) to chiral dinotefuran at the enantiomeric scale and demonstrated the microscopic mechanism of species selectivity in nAChR-mediated enantioselective neurotoxicity. The findings indicated that (S)-dinotefuran had a higher affinity for honeybee nAChR than (R)-dinotefuran whereas both enantiomers exhibited similar bioactivity toward cotton aphid nAChR. The results of dynamic neurotoxic processes indicated the association of conformational changes induced by chiral dinotefuran with its macroscopic neurotoxicity, and (R)-dinotefuran, which exhibit low toxicity to honeybee, was found to induce significant conformational changes in the enantioselective neurotoxic reaction, as supported by the average root-mean-square fluctuation (0.35 nm). Energy decomposition results indicated that electrostatic contribution (ΔGele) is the critical energy term that leads to substantial enantioselectivity, and both Trp-51 (-2.57 kcal mol-1) and Arg-75 (-4.86 kcal mol-1), which form a hydrogen-bond network, are crucial residues in mediating the species selectivity for enantioselective neurotoxic responses. Clearly, this study provides experimental evidence for a comprehensive assessment of the health hazards of chiral dinotefuran.


Assuntos
Síndromes Neurotóxicas , Receptores Nicotínicos , Animais , Abelhas , Estereoisomerismo , Neonicotinoides/toxicidade , Neonicotinoides/química , Guanidinas/toxicidade , Guanidinas/química , Nitrocompostos/toxicidade , Nitrocompostos/química
19.
ACS Chem Neurosci ; 15(7): 1501-1514, 2024 Apr 03.
Artigo em Inglês | MEDLINE | ID: mdl-38511291

RESUMO

NS9283, 3-(3-pyridyl)-5-(3-cyanophenyl)-1,2,4-oxadiazole, is a selective positive allosteric modulator of (α4)3(ß2)2 nicotinic acetylcholine receptors (nAChRs). It has good subtype selective therapeutic potential afforded by its specific binding to the unique α4-α4 subunit interface present in the (α4)3(ß2)2 nAChR. However, there is currently a lack of structure activity relationship (SAR) studies aimed at developing a class of congeners endowed with the same profile of activity that can help consolidate the druggability of the α4-α4 subunit interface. In this study, new NS9283 analogues were designed, synthesized, and characterized for their ability to selectively potentiate the ACh activity at heterologous (α4)3(ß2)2 nAChRs vs nAChR subtypes (α4)2(ß2)3, α5α4ß2, and α7. With few exceptions, all the NS9283 analogues exerted positive modulation of the (α4)3(ß2)2 nAChR ACh-evoked responses. Above all, those modified at the 3-cyanophenyl moiety by replacement with 3-nitrophenyl (4), 4-cyanophenyl (10), and N-formyl-4-piperidinyl (20) showed the same efficacy as NS9283, although with lower potency. Molecular dynamics simulations of NS9283 and some selected analogues highlighted consistency between potentiation activity and pose of the ligand inside the α4-α4 site with the main interaction being with the complementary (-) side and induction of a significant conformational change of the Trp156 residue in the principal (+) side.


Assuntos
Receptores Nicotínicos , Receptores Nicotínicos/metabolismo , Piridinas/farmacologia , Piridinas/química , Membrana Celular/metabolismo , Oxidiazóis/farmacologia
20.
Transl Psychiatry ; 14(1): 146, 2024 Mar 14.
Artigo em Inglês | MEDLINE | ID: mdl-38485715

RESUMO

There is growing evidence that autoantibodies (AAbs) against proteins expressed in the brain are playing an important role in neurological and psychiatric disorders. Here, we explore the presence and the role of peripheral AAbs to the α7-nicotinic acetylcholine receptor (nAChR) in inflammatory subgroups of psychiatric patients with bipolar disorder (BD) or schizophrenia (SCZ) and healthy controls. We have identified a continuum of AAb levels in serum when employing a novel ELISA technique, with a significant elevation in patients compared to controls. Using unsupervised two-step clustering to stratify all the subjects according to their immuno-inflammatory background, we delineate one subgroup consisting solely of psychiatric patients with severe symptoms, high inflammatory profile, and significantly increased levels of anti-nAChR AAbs. In this context, we have used monoclonal mouse anti-human α7-nAChR antibodies (α7-nAChR-mAbs) and shown that TNF-α release was enhanced upon LPS stimulation in macrophages pre-incubated with α7-nAChR-mAbs compared to the use of an isotype control. These findings provide a basis for further study of circulating nicotinic AAbs, and the inflammatory profile observed in patients with major mood and psychotic disorders.


Assuntos
Transtorno Bipolar , Receptores Nicotínicos , Esquizofrenia , Humanos , Camundongos , Animais , Receptor Nicotínico de Acetilcolina alfa7 , Inflamação/metabolismo , Autoanticorpos
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...